Step of Proof: sq_stable__uni_sat
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
sq
stable
uni
sat
:
T
:Type,
a
:
T
,
Q
:(
T
). (
x
:
T
. SqStable(
Q
(
x
)))
SqStable(
a
= !
x
:
T
.
Q
(
x
))
latex
by ((Unfold `uni_sat` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
.
Definitions
x
.
t
(
x
)
,
t
T
,
a
= !
x
:
T
.
Q
(
x
)
,
x
(
s
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
sq
stable
wf
,
sq
stable
equal
,
sq
stable
implies
,
sq
stable
all
,
sq
stable
and
origin